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Abstract - High performance control design for a flexible
space structure is challenging since high fidelity plant
models are difficult to obtain a priori. Uncertainty in

the control design models typically require a very robust,
low performance control design which must be tuned on-
orbit to achieve the required performance. A new proce-
dure for refining a multivariable open loop plant model
based on closed-loop response data is presented. Us-
ing a minimal representation of the state space dynam-
ics, a least squares prediction error method is employed
to estimate the plant parameters. This control-relevant

system identification procedure stresses the joint nature
of the system identification and control design problem

by seeking to obtain a model that minimizes the differ-
ence between the predicted and actual closed-loop per-
formance. This paper presents an algorithm for iterative
closed-loop system identification and controller redesign
along with illustrative examples.
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1. INTRODUCTION

Implicit in the design of high performance control sys-
tems is the availability of an accurate model of the
system to be controlled. Although system identifica-
tion and control design are both critical aspects of high
performance model based control design, the theoreti-
cal foundations of these two disciplines have developed
distinctly. Developments in system identification have
been directed toward obtaining accurate nominal models
with bounds on the associated uncertainty. Recognizing
this dependence on accurate nominal design models, ro-
bust control theory has been developed to accommodate
modeling errors. Recently, attention has been drawn to

the fact that the issues of system identification and con-
trol design must be treated as mutually dependent. In
Ref. [1], Skelton points out that since the magnitude
and spectrum of excitation forces are controller depen-
dent, an appropriate model for control design cannot be
determined independent of the controller. The point is
made that the validity of the model is dictated by the
controller instead of the opposite, as is usually assumed.
Since the model that is most appropriate depends on the
control design, the open-loop response of a model is not
sufficient to indicate the fidelity of the model for control

design. Additionally, robust performance requires an ac-
curate model of the plant in the controller crossover fre-
quency range [2], indicating that the amount of model
error that can be tolerated is frequency and controller de-
pendent, ttence, the issues of model identification and
model based control design must be treated as a joint
problem suggesting an iterative solution [1],[3].

Closed-loop system identification, (i.e. identification of
the open-loop plant given closed-loop response data and
knowledge of the compensator dynamics), is currently
a field of active research. Most of the methods that

identify state space models of the open-loop plant are
based on identifying the closed-loop Markov parameters
from frequency response functions and then extracting
the open-loop Markov parameters. A discrete time state
space realization is then obtained from these identified
Markov parameters. An approach to iterative closed-

loop system identification and controller redesign is given
by Liu and Skelton where a state space model is esti-
mated using the q-Markov Cover algorithm and a con-
troller is designed using the Output Variance Constraint
algorithm [4]. q-Markov Cover theory describes all re-
alizations of a linear system which match the first q
Markov parameters and covariance parameters of the
true system generated by pulse responses. First the
entire closed-loop system is estimated and then using
knowledge of the compensator dynamics, the plant is
extracted. However, the identified open-loop plant has
dimension equal to the controller dimension plus the di-
mension of the identified closed-loop plant. Model order
reduction is used to remove the superfluous states. A
similar approach is taken in Ref. [5] where Phan et al.
formulate a method which first obtains the closed-loop
Markov parameters and then the open-loop Markov pa-



rametersarerecovered.A discretetimestatespacere-
alizationis thenobtainedfromtheMarkovparameters.
Otherrelatedapproachesaregivenin Refs.[6]and[7].

Toprovidesynergism,aniterativeprocessshouldmatch
thesystemidentificationobjectiveswiththecontrolde-
signobjectives.Ref. [3] presentsan iterativealgo-
rithmfor frequency-responseidentificationfromclosed-
loopdataandrobustcontroldesign.Theidentification
phaseis controlorientedwith theobjectiveof provid-
ing robustperformanceby closelyapproximatingthe
achievedclosed-loopperformance.The interplaybe-
tweenidentificationandcontroldesignis formalizedby
specifyingaperformancemetric(norm)formodelbased
optimalcontroldesignandanidentificationcostfunc-
tion that minimizesthedifferencein theachievedper-
formanceandnominaldesignperformanceasdefinedby
thesamemetric.Manyalgorithmshavebeendeveloped
basedonthisgeneralframeworkwhichutilizedifferent
performancenormsandidentificationalgorithms.An
excellentsurveyofthis topicisgivenin Ref.[8].Most
of theworkcitedthereinhasbeendonein thecontext
of single-input,single-output(SISO)systems.

A classicalapproachto parameterestimationwhichhas
beenextendedtoclosed-loopsystemidentificationisthe
predictionerrorapproach[9].Thisoptimizationmethod
estimatestheparametersofa linearsystembyminimiz-
ing thesquaredsumof theerrorsbetweentheactual
measurementsandthepredictedmeasurements.Zang,
Bitmead,andGeverspresentaniterativepredictioner-
ror identificationandcontroldesignalgorithmbasedon
theH2 norm [10]. The control objective is used to fre-
quency weight the identification cost functional and the
resulting prediction error spectrum is used to frequency
weight the control design. In this manner the control
is penalized heavily where the SISO transfer function
model fit is poor and the model is weighted to fit best

in the regions most critical to performance. Another
approach utilizes the dual Youla parameterization of all
plants stabilized by a given controller. This approach
was introduced by Hansen and Franklin [11] and further
elaborated by Hansen, et al. in Ref. [12] as applied
to closed-loop experiment design. Schrama applied the
dual Youla parameterization to closed-loop system iden-

tification in Refs. [13] and [14] as did Anderson and
Kosut in Ref. [15]. A related method directed toward
identification of the coprime factors of the plant was in-
troduced by Schrama in Ref. [13] and was further elab-
orated in Refs. [14] and [16].

In this paper the prediction error method is extended
to closed-loop identification for multivariable systems.
Building on a method developed for estimation of the pa-
rameters of an open-loop system in canonical form from
open-loop data, a new procedure for closed-loop system
identification is developed and demonstrated.

2. BACKGROUND

The traditional approach to control design is to obtain
a nominal model of the plant,/5, which is the basis for

control design. Since P is an approximation of the true

plant, P, the model based compensator, Cp, must pro-
vide a certain level of robust stability (i.e., Cp must in-

ternally stabilize P and P). In the system identification
process an attempt is made to bound the model error

[[ P - P II, which determines the amount of robustness
required by the control design. It is also desirable that
the controller provide some level of performance robust-
hess; that is the achievable performance should not differ
significantly from the nominal design performance. High
performance control design for a flexible space structure
is especially challenging since high fidelity nominal plant
models are difficult to obtain. The large error bounds
that result typically require a very robust, low perfor-
mance control design which must be tuned on orbit to
achieve the required performance.

An upper bound on achievable performance is [3], [14]

II J(P, Cp) II<_

II J(P, Cp) II + II J(P, cp) - J(P, Cp) II (1)

where

II J(P, cp)[1: the achieved performance

H J(P, Cp) H: the nominal performance, and

H J(P, Cp) - J(P, Cp) II : the
performance differential.

The choice of a specific performance metric J and norm
II * II is determined by the control design methodology.
To achieve high performance requires

• high nominal performance

(¢*11 J(P, Cp) II small)

• robust performance

(¢*11 J(P, cp) - J(P, Cp) I1<<11J(P, Cp) II)

The second condition is actually a requirement on model
fidelity and indicates that the nominal closed-loop sys-
tem model must closely approximate the actual closed-

loop system performance when the compensator Cp is
used. Therefore, the "fitness" of the nominal model is
a function of the compensator and must be judged from
a closed-loop perspective. This fitness is not guaranteed
by good open-loop model matching nor is it precluded
by poor open-loop model matching [1].

When the model error II P - 15 II is large, stability
and performance robustness necessitates a low author-
ity controller. Since a low authority controller is not
as sensitive to model errors, the performance differential



will besmallascomparedto highauthoritycontrollers.
However,theperformancemaynotbesatisfactory.To
achievehighperformance,the issuesof modelingand
controldesignmustbetreatedasajoint problem.The
fitnessof thedesignmodel/5isafunctionofCp, which
is itself a function of the design plant. In some cases, high
performance control design requires an iterative closed-
loop system identification and control design procedure.

A new closed-loop system identification method is pre-

sented in this chapter which is one step of an iterative
closed-loop system identification and control design pro-
cedure. It is assumed that a moderately accurate dy-
namic model of the system to be controlled is available
for the initial low authority controller design. However,
this initial design model is not of sufficient fidelity to
permit high authority control design. The objective of
the closed-loop system identification procedure is to re-
fine the initial control design model based on closed-loop
response data.

In the development of a closed-loop system identifica-

tion method, consideration must be given to the non-
uniqueness of the triple (A, B2, C2) in the identified real-
ization. Although there are an infinite number of equiva-
lent state space realizations for a system, a system with
n states, nu inputs, and ny outputs can be uniquely
expressed with a minimum of n(nu + ny) parameters.

Having as the objective of the closed-loop system iden-
tification process the ability to refine an existing de-
sign model, one approach which circumvents the non-
uniqueness problem is to realize the open-loop system
matrices in a unique, minimal form and directly iden-

tify the canonical parameters from closed-loop response
data. Denery has developed a method of parameter esti-
mation for multivariable state space systems from open-
loop test data using canonical forms [17]. By utilizing
the structure of the closed-loop system matrices, an ex-
tension of Denery's algorithm is developed herein to esti-
mate the plant parameters based on closed-loop response
data.

Proper selection of the objectives of system identification
and control design further stresses the joint nature of the
identification and control problem. Based on the predic-
tion error method, the objective of the new closed-loop
identification procedure developed in this chapter is to
obtain a model/5 that minimizes the performance differ-

ential [[ T-7 _ 112where T is the actual closed-loop system

and 7_ is the identified closed-loop system. This system
norm cannot be evaluated since T is not known. How-

ever the actual and predicted closed-loop measurements
are known and an equivalent objective is to minimize the
prediction error of the closed-loop system, II Y-/) 112.The
actual and predicted closed-loop system outputs, y and
_, respectively, are determined for the same set of inputs.
The least squares cost functional for control dependent
closed-loop system identification then is

if0"J = -_ (y- fl)TW(y- ft)dt (2)

where W is a constant matrix chosen to weight the rela-

tive importance of different measurement outputs. The
control objective is matched with the identification ob-

jective by designing the controller to minimize the H2

criterion [[ _b [[2.

The rest of the paper is structured as follows. First,
the algorithm developed by Denery for open-loop sys-
tem identification procedure is presented in detail. Next,
the extension of the canonical system identification algo-
rithm to closed-loop system identification is presented.
Finally, an algorithm for iterative closed-loop system
identification and control redesign is presented along
with illustrative examples.

3. SYSTEM IDENTIFICATION ALGORITHM

In Ref. [17], a two-step procedure is given which gen-
erates parameter estimates based on noisy measurement
data. The algorithm begins with an equation error pro-
cedure, which is similar to a linear observer, to generate
an initial estimate of the parameters. Noisy measure-
ment data may cause the equation error estimates to be
biased, but they are sufficiently accurate to initialize the
second step, an iterative quasi-linearization output error
procedure. Since the structure of the two procedures are
identical with one exception that will pointed out in the

following, these two procedures are combined to form an
iterative algorithm that is robust to initial parameter es-
timates and relatively insensitive to measurement noise.
First, the details of the equation error procedure will be
presented, followed by the output error procedure.

Equation Error Procedure

Consider a model of the state space system to be iden-
tified:

= .rz + au, z(O)= zo (3)
f, = nz (4)

The objective is to identify some _', 6, 7/, and z0 which
represents the dynamics of the unknown system based on
knowledge of the inputs, u(t), and noisy measurements,
y(t). An estimate of the unknown parameters may be
obtained by minimizing the cost functional given in Eq.
2. Directly minimizing J results in a nonlinear optimiza-
tion process, but in the absence of measurement noise,
a linear formulation may be obtained. Recognizing that
for a perfect model the output in Eq. 4 will exactly equal
the measurements and y - _) = 0, this difference can be
fed back to the model with arbitrary gains K and M
according to

= J:z + Gu + IC(y - nz) (5)

9 = nz+M(u-nz) (6)

which can also be written

]: = .rNZ + gNU + _igu + i_y (7)



z(0) = zm+*z0

= 7/NZ+.My

by use of the definitions

.TN =

g2v =

7/N =

ZNO =

(8)
(9)

7 - K:7/ (1o)
g - dg (11)

- M)7/ (12)
zo - Jzo (13)

The elements of (J'-K:7/) and (I-.&47/) may be chosen
independently of the unknown elements of.T and 7t by
using a maximum of n * ny parameters in K: and M
when the structure of the system is in a specific form.
As a consequence, Y'N, gN, 7/N, and zNo are chosen and
the unknown parameters are contained in K:, M, _fg, and
6zo.

The structure of the system must be such that the un-
known parameters in .T" are coefficients of measured
states. To obtain this structure, Denery developed a
canonical form for multivariable systems which is anal-
ogous to a canonical form in Ref. [18] for multi-input
systems. Denery's canonical form is called the observer
canonical form in Ref. [19], which is dual to the con-
troller canonical form presented in Chapter III. It can
be shown that if the plant dimension is an even mul-
tiple of the number of outputs and the first n rows of
the observability matrix are linearly independent, then
the realization is canonical and 7/ will consist only of
ones and zeros. Otherwise, some elements of 7/ will
be included as unknown parameters in the estimation

procedure.

Eq. 9 can now be rewritten as

= YN + f(t)7 (14)

where YN isthe output of the linearizedtrajectory

ZN = ._NZN "{-gN u, zN(O) = ZNO (15)

YN = 7/NZN (16)

The sensitivity matrix, f(t), is given by

O_ (17)f(t) =

where the vector of parameters to be estimated is

vec(K:)

vec(6g) (18)
= vec(M)

wcff zo )

Using the expression for i) from Eq. 14 in the cost func-
tional, Eq. 2, results in J becoming quadratic in the
unknown parameters. By differentiating J with respect
to the unknown parameters and equating the result to
zero, the estimate of 7 is given by

;,/ = [fot'f(t)Twf(t)dt] -1 (19)

X [fot' f(t)T W(y - y)dt] (20)

or for discrete measurements

The i th column of f(t) is Z)7,(t), which is the output of

the i th sensitivity equation

OK: 0(6g) u (23)
Z"li : ffrNZ'3q "_ -_i y+

O( zo) (24)
OTi

0M

= 7/NZ.,,+ v (25)

From _, the system matrices are obtained by solving Eqs.
10 - 13 for 74, g, .7", and z0. These values are used in
_'N, gN, 7/g, and ZNo as the initial values for the next
iteration.

Output Error Procedure

If the measurement data used in the equation error pro-
cedure is corrupted with unbiased measurement noise, a
bias error will result in the parameter estimates. This
can be circumvented by using an output error proce-
dure which yields unbiased parameter estimates based
on unbiased noisy measurements, provided the initial es-
timates are sufficiently accurate. Typically the biased es-
timates obtained from the equation error procedure are

sufficiently accurate to initialize the output error proce-
dure. Hence the two procedures form a combined algo-
rithm for unbiased parameter estimates based on unbi-
ased noisy measurements.

The output error procedure implements the method of

quasi-linearization, which is a well-known approach to
minimize Eq. 2 subject to Eqs. 3 - 4. The method
of quasi-linearization approximates the response of the

system model by a nominal trajectory YN, based on the
initial parameter estimates, plus a linearized correction
about the nominal trajectory. By defining the initial
estimates .T, g, 7/, and z0 to be .TN, gN, "/iN, and ZN0,
respectively, !) may be approximated by _)A from

k

+[g v (26)
Z'AO : ZNO + dzo (27)

_IA = 7/NZA + [7/ -- 7/N]ZN (28)

where ZN is obtained from

ZN = _:NZN + gNU (29)

zN(O) ---- ZNO, YN = 7/NZN (30)



Substituting these

Z A =

ZAO =

YA =

which is identical

Using the definitions in Eqs. 10 - 11, and recognizing
that the initial estimates are sufficiently accurate, im-
plies

K:n = K:[nN + M7/] _ K:nN (31)

.A/f']-_ = .A/[ [']-_ N -I- J_'_] ,_ -_7/N (32)

expressions in Eqs. 26 - 28 yields

UNSA + _NU + _5GU+ K:YN, (33)

ZNO + &o (34)

7/N_A + My,, (35)

to Eqs. 7 - 9 except YN replaces y.
Using YA in Eq. 2 instead of ._ reduces the minimization
problem to a form identical to the equation error proce-
dure, except YN is used in the place of y when computing
f in the sensitivity equations, Eqs. 23 - 25. In the ab-
sence of noise in the measurements, the equation error

estimate is the same as the quasi-linearization estimate.

Closed-Loop System Identification Algorithm

Denery's algorithm is extended to closed-loop system
identification by expressing the plant in observer canon-
ical form and exploiting the structure of the closed-loop
matrices. For the plant given by

= Ax+ BlW+ B2u (36)

y = C2x (37)

and a dynamic compensator

xe = A¢x¢ + Bey (38)

u = -Ccxc (39)

the resultingdosed-loop dynamics are

xc = B_C2 Ac x_

Y = 0 I xc

As with the open loop algorithm, noisy measurements
are accounted for by averaging over multiple data sets.

If the plant (A, B2,C2) matrices are expressed in ob-
server form, then the C2 matrix consists of ones and
zeros and the unknown parameters in A are coefficients
of the measured transformed states. (As stated earlier,
in some cases the transformation may not be canonical

resulting in the C2 matrix having additional nonzero el-
ements, but these parameters can be estimated as well.)
It is assumed that the compensator state vector time

history is recorded. Comparison of Eqs. 3 - 4 with Eqs.
40 - 41 indicates that

:T = BcC2 A_ ' _ = 0 0

7/= [C_0 0]i (43)

Since the only unknowns in _" and _ are the plant ma-
trices A, B1, and B2, the unknown parameter matrices

K: = [ K:110 -K:,_Cc]0 (44)

[ (_11 (_12 ] (45)a6 = 0 0

are defined as

In the case of a true canonical form for the plant, 7t is

completely known. Note that K:n corresponds to the un-
known parameters in A,/(:12 corresponds to the unknown

parameters in B2, (f_ll corresponds to the unknown pa-
rameters in B1, and _G12 =/(:12.

For closed-loop system identification, the partial deriva-
tive expressions in the sensitivity equations, Eqs. 23 -
25, are modified as follows and the unknown parameter
vector is defined as

vec(K:ll)

vec(K:,2)
7---- vec(_611)

_ec(&o)

For 7i corresponding to the (j, k) element of K:ll,

and

(46)

OM O&o
oaG o, - o, = 0 (48)o -7= o.r,

where eje T is a matrix of zeros except for a 1 in the (j, k)
element. For 7i corresponding to the (j,k) element of
K:12,

0 [0 ]__ = o7, (49)
07i 0 0

where

c9K:12C_ _ _e.ieT C_ (50)
07i

which is an nxnc matrix of zeros except for the jth row
which is comprised of the k th row of C¢. Since (f_l= =
K:12,

-_-7i - 0 o_, (51)

where _0_, = _o-. iszeroexcept for a one inthe (j,k)

o_ and _ are identicallyzero.element. The terms _ 0_,
For 7i corresponding to the (j, k) element of (i_,l,

__ = o_, (52)
07_ 0 0

where _ is zero except for a one in the (j,k) ele-

ment and all others are identically zero. Similarly, for 7i

OK: _ eje T (47)



corresponding to the jth element of 6z0 _ is a zero

vector with a one in the jth element and all others are
identically zero.

Note that this algorithm is not guaranteed to converge.
Since the estimates are determined by minimizing the er-
ror in the closed loop time response and not the error in
the open loop plant parameter estimates, the plant pa-
rameter estimates may not converge to the "true" plant
parameters but still provide a good control design model.

4. ITERATIVE CONTROL REDESIGN
EXAMPLES

The iterative closed-loop system identification and con-
trol design procedure implemented herein is patterned
after the approach of Ref. [3] with one notable excep-
tion to be pointed out below.

Iterative Closed-Loop Identification and Control Re-
design Algorithm:

1. Beginning with model /5i, design a set of H2 con-
trollers of varying control authority.

2. Evaluate actual and estimated output and control
costs and performance differential.

3. Determine highest performance control design point
which satisfies performance differential constraint

threshold, denoted Cpj.

4. Using closed-loop data from T(P, Cpj) and/5i, do

closed-loop system identification to determine/5i+1.

5. Repeat until desired performance is attained.

This algorithm differs from the framework presented in
Ref. [3] in that the amount of control authority in-
crease between iterations is more formally quantified.
Recognizing that small changes in controller authority
tend to result in small changes in performance, a con-
stant scaling factor was used in the control design step
in Ref. [3] which was slightly increased each identifica-
tion/control design iteration. Thus the control author-
ity was gradually increased each iteration until an ap-
propriate model and high authority control design was
achieved. In the procedure introduced above, the perfor-
mance is evaluated for a set of controllers with varying
authority to ascertain the onset of performance differ-
ential due to model mismatch. The output and control
costs for performance assessment are evaluated from the
mean-square closed-loop output response to white noise
inputs and the mean-square control signal, respectively.

Instead of numerous iterations of identification and con-

trol design, the emphasis is placed on evaluating a set
of controllers designed for a common model. By ex-
plicitly evaluating the performance differential for each
controller, larger steps in control authority may be

_X_ _X2

\\\\\\\\\\\\\\\\

Figure 1: Coupled Mass Benchmark Problem

taken with each iteration resulting in fewer identifica-

tion/control design iterations. Although the iterative
procedure is not guaranteed to converge, the convergence
may be checked at each iteration by evaluating the per-
formance at each iteration.

Coupled Mass Example

As an example of the iterative identification and control
procedure, the coupled two mass problem illustrated in
Fig. 1 is used. This example problem highlights robust
control issues as related to flexible space structures and
was used as a benchmark problem in Ref. [20] (with

kl = 0 and dl = 0). A disturbance acts on mass two
and the control force is applied to the first mass. The
coefficient matrices are:

0 0

0 0
A= _ k_t_+_._

ml

13"l 2 I'n 2

B 1 _

1

0

ml

m2

0

0 Bs =
0 '

1�ms

0
1
d_a_

_2

0

0

1/ml
0

(53)

(54)

The state vector is _ = [xl, x2, xl, ;_S] T and the mea-

surements are y = [xl, xs] T, so

[1 0 0 0] (55)C2 = 0 1 0 0

Two cases will be considered, the first being open-loop
stable and the second case having a rigid body mode.
The stable system is described by kl = k2 -- 1.2, ml =
ms -- 1.5, _x -- _s = 0.1 and the damping constant is

computed by di = 2_i V/'_s/mi.

The procedure begins with an initial plant for control
design. As an extreme case, the initial plant is obtained
by adding 50% error to k,, ks, fix, and _s and 5% error
for each of the two masses. After transforming the true

(A, [B1 Bs], (72) triple to observer canonical form, the
resulting realization is

0 -0.8000 0 0.8000

1.0000 -0.1789 0 0.1789 (56)
At = 0 0.8000 0 -1.6000

0 0.1789 12000 -0.3578



[Blt B2t] =

0.6667

0

0

0

[o1C20 = 0 0

(57)

0

0

0.6667

0

00
0 (58)

and the corresponding initial triple in observer canonical
form is

A0 =

0 -1.1429 0 1.1429

1.0000 -0.3207 0 0.3207

0 1.1429 0 -2.2857

0 0.3207 1.0000 -0.6414

(59)

0.6349 0

0 0
[B10 B201 = 0 0.6349 (60)

0 0

In observer canonical form, the C2 matrix is fixed for a
given set of observability indices and the columns of the
A matrix with free elements corresponds to the columns
of C2 that have an element equal to one. Note that the
resulting initial design plant elements varied by 79.28%
and 42.86% in the A matrix, and 4.76% in the B1 and
B2 matrices from the truth model.

A set of LQG controllers of varying authority were de-
signed for the initial design plant using the weighting
matrices

[,no] ,61,0 pI, u , V= 0 I,_ '

where p is used to vary the control authority. The per-
formance of this set of controllers was then evaluated

with both the design model and the truth model to as-
sess the performance differential that results from the
initial erroneous model. Recall from the beginning of
this chapter that the performance differential is a mea-
sure of performance robustness. Fig. 2 indicates a large
performance difference at all control authority levels, so
a controller with a moderate authority level (p = 5) is
chosen for initial implementation.

Using the LQG controller designed for p = 5 with the
initial design model, the closed-loop is excited with unit
intensity, zero mean random noise low pass filtered at 25
Hz. The closed-loop measurements are corrupted with a
low intensity random measurement noise (the standard
deviation of the noise was equal to 20% of the standard
deviation of the measurements). In Ref. [17], measure-
ment noise is accounted for by averaging over multiple
experiment sets. In this example, five sets of measure-
ments are used and the five resulting sets of estimated
system matrices are averaged.

Table 1 gives the initial, actual, and estimated parame-
ters of the system matrices in observer canonical form.
The significant error is clear as well as the convergence
of the parameter estimates after 50 iterations. As with

5O
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g'2s
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i
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, J
3,5 4 4.5

Figure 2: Performance Differential Using Initial Plant:

Coupled Mass Problem
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Figure 3: Convergence of A A(4,3)

the combined open-loop algorithm, the first 25 iterations
used the equation error method and the second 25 iter-
ations used the output error method. The convergence
over 50 iterations for the correction to the A(4,3) pa-
rameter is shown in Fig. 3. This parameter corresponds
to the largest element of 7 (required the largest correc-
tion) at the first correction iteration. A slight disconti-
nuity is evident at the 25 th iteration when the algorithm
switched from the equation error method to the output
error method. However, this is removed after one itera-
tion.

Having refined the initial design model to obtain a more
accurate model, a second set of LQG controllers is de-
signed and the performance differential evaluated. Fig.
4 shows that the gap between design performance and
achieved performance is considerably decreased at all
authority levels when compared to Fig. 2. The iden-

tified model results in robust performance (as defined
at the beginning of this chapter in regard to perfor-
mance differential) and good nominal performance. It
bears pointing out that when the identification exper-
iment was conducted without measurement noise, the

achieved performance and design performance curves
were indistinguishable, indicating that the difference in
Fig. 4 is due to measurement noise. More averages and
more iterations could possibly further diminish the per-
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formance differential. Another perspective is to com-
pare the achieved performance for a set of LQG designs
based on the initial plant model with the achieved per-
formance for the designs based on the estimated model,
shown in Fig. 5. The difference between the dashed line
and the solid line indicates the performance increase at-
tained by performing closed-loop system identification
and controller redesign. Although the amount of per-
formance sacrificed by designing the controller based on
an initial open-loop design model depends on the spe-
cific plant and control design, Fig. 5 illustrates the fact
that model error limits achievable performance and bet-
ter performance can be obtained by refining the model
to reduce the error. The design point corresponding to

p = 5 which was used in the closed-loop system identifi-
cation is indicated by 'x' on Fig. 5.

A more difficult identification problem is obtained by re-
moving the spring and damper denoted kl and dx on Fig.
1 resulting in an unstable rigid body mode in the open-
loop plant. Identification of open-loop unstable systems

(such as spacecraft) is a difficult task which is a further
motivation for closed-loop system identification. Using
the same initial stiffness and damping error, Table 2 in-

dicates the convergence of the estimated system param-
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Figure 6: Structural Control Experiment

eters after 50 iterations. Again, the measurements were
noise corrupted and the estimates were averaged after
five identification experiments. Similar convergence of
the parameter estimates was observed for this case as
for the open-loop stable example.

Building Control Example

A second example is derived from a benchmark problem
in vibration control of a building subject to an earth-
quake excitation [21]. The problem is based on an exper-
imental model of a three-story tendon controlled struc-
ture at the National Center for Earthquake Engineering
Research [22] is depicted in Fig. 6.

A 20 state model is provided in Ref. [22] that was ob-
tained by system identification experiments on the lab-
oratory structure. A six state nominal control design
model was obtained by balancing and residualizing the
20 state model, retaining modes at 2.268, 7.332, and
12.240 Hz. Inputs to the six state nominal design model
are the ground acceleration and control force and the
outputs are the relative displacements of the three floors,
which results in 30 parameters to be estimated. An ini-

tial erroneous design model is obtained by adding 5% er-
ror to the natural frequency square terms and the B1 and
B2 matrices. Although only 5% error is introduced, the
maximum errors in the elements of the A, Bz, and B2

matrices (in observer canonical form) are 72.2%, 9.9%,
and 39.6%, respectively.

Using the initial model, a set of LQG controllers is de-
signed using p to vary the control authority. For this ex-
ample, filtered noise is used as input excitation and per-
fect measurements are assumed. Fig. 7 indicates the per-
formance differential resulting from controllers designed
for the initial model, which is relatively constant at all



Table1:ComparisonofInitial,Actual,andEstimatedParametersForOpen-LoopStableCoupledMassProblem

Initial Parameters True Parameters Estimated Parameters

-1.1429 -0.8000 -0.8240

-0.3207 -0.1789 -0.1832

1.1429 0.8000 0.8252

0.3207 0.1789 0.1993

1.1429 0.8000 0.8219
0.3207 0.1789 0.1720

-2.2857 -1.6000 -1.6531

-0.6414 -0.3578 -0.3815

0.6349 0.6667 0.6672

0 0 -0.0064

0 0 -0.0027

0 0 0.0016

0 0 -O.OOO4

0 0 0.0113

0.6349 0.6667 0.6733
0 0 0.0039

Table 2: Comparison of Initial, Actual, and Estimated Parameters For Open-Loop Unstable Example

Initial Parameters True Parameters Estimated Parameters

-1.1429 -0.8000 -0.8228

-0.3207 -0.1789 -0.1830

1.1429 0.8000 0.8253

0.3207 0.1789 0.1937
1.1429 0.8000 0.8228

0.3207 0.1789 0.1835
-1.1429 -0.8000 -0.8231

-0.3207 -0.1789 -0.1860

0.6349 0.6667 0.6637

0 0 0.0009

0 0 -0.0011

0 0 -0.0016

0 0 0.0016
0 0 0.0034

0.6349 0.6667 0.6678

0 0 O.OO45
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With regard to the H¢¢ subproblem, this requires the
uncertainty representation to consist only of (input or
output) multiplicative and additive uncertainty models,
which implies that it is not possible, for example, to in-
clude parametric uncertainty such as mass or stiffness
uncertainty in the generalized plant formulation. The

matrices D21, D_v, Dip, and D12 are obtained from
the input/output uncertainty models and disturbances,
and do not contain parameters to be estimated. Conse-
quently, the plant matrices A, B_, and C2 are the only
matrices to be estimated by closed-loop system identifi-
cation. To relax this constraint would require introduc-
ing additional actuators and sensors for the sole purpose
of system identification.

Figure 7: Performance Differential Using Initial Plant:

Building Problem
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Figure 8: Performance Differential Using Estimated

Plant: Building Problem

control authority levels. A low authority controller is
used for closed-loop system identification which results
in an estimated plant with the performance differential
shown in Fig. 8. For this estimated model there is vir-
tually no performance differential.

A brief discussion on the closed-loop system identifica-
tion algorithm from a numerical implementation per-
spective is warranted. The stability of the algorithm
is sensitive to several factors. The primary factor influ-

encing convergence of the parameter estimation is the
matrix inversion in the computation of "_ (Eqs. 20 or

22). For this inverse to exist, the (ny + nc)xNp sen-
sitivity matrix f must have full row rank where Np =
n * (nu + ny + nw) is the number of unknown param-
eters. Recall that the columns of f are time histories
of the sensitivity equations, Eqs. 23 - 25, which include
the compensator state time histories. If the input is not

sufficiently rich to excite the measurement and compen-
sator states, then f will not have full rank. This difficulty
is compounded as the number of parameters increases.
If the matrix tends to singularity, the magnitude of the
elements of "_ diverge. In order to alleviate the diver-
gence of "_ in the examples above, a relaxation factor
was introduced that scaled "_. Scaling "_ by a relaxation
factor of 0.5 typically was sufficient to produce smooth
convergence as seen in Fig. 3. Without the relaxation
factor, the estimates would overshoot and overcorrect,

resulting in divergence of the parameter estimates. The
relaxation factor in essence damped the overshoot of the
correction steps at each iteration. This could possibly
have been accomplished by using a pseudo-inverse of the
matrix to zero the small singular values, but that would
have introduced error. Using the relaxation factor did
not introduce error but only slowed the convergence.

Discussion
5. CONCLUSIONS

Since the end objective is an iterative system identifi-
cation and model-based control design procedure, addi-
tional constraints are placed on the input and output
processes. The system identification is based on closed-
loop test data which mandates that the generalized plant
for control design consist of actuated inputs and mea-
sured outputs only. Fig. 9 illustrates this requirement
where the disturbance inputs, w and wp, act through
the control input and sensor channels and the perfor-
mance variables, z and zp, must be linear combinations
of the sensed variables, y, and the control inputs, u.
Hence a constraint is placed on the generalized plant
formulation by the system identification such that the

columns of B1 and Bp lie in the column space of B2
and the rows of C1 and Cp lie in the row space of C2.

This paper has shown that to achieve high performance
control often requires reducing model error through sys-
tem identification. In many cases open-loop testing is

not possible and even when it is, often the most appro-
priate model for control design is obtained from closed-
loop response data. A new method for refining a control
design model from closed-loop response data is presented
herein. Based on a prediction error method, the open-
loop plant parameters are estimated in a canonical form.
Examples have shown that higher performance can be
obtained when the controller is redesigned based on the
refined model.

A major shortcoming of the closed-loop system identifi-
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cation procedure is numerical sensitivity. The solution [6]
procedure presented herein requires the inversion of a
large data matrix which tends to be ill-conditioned. En-
suring full-rank of the data matrix requires sufficiently
rich excitation in all of the modes to be identified which [7]

is often quite difficult in practice due to limitations such
as sensor and actuator dynamics. Methods which do not
involve matrix inversion such as genetic algorithms have
potential for the closed-loop parameter estimation. An
additional benefit of genetic algorithms is that the sys-
tem identification can be operating in the background [8]

as part of an autonomous identification/controller tun-
ing process. Future research should be conducted to that
end. Finally, the measurement noise properties (inten-
sity, frequency spectrum, etc.) should be explicitly ac- [9]
counted for in the parameter estimation instead of the
ad hoc use of ensemble averaging.
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